sPHENIX γ-Jet Projections

Joe Osborn UMich 5/15/17

Motivation

- Reminder: Interested in γ-jet in p+p and p+Au collisions to study prediction of factorization breaking
- Following physics motivation in PRD 95, 072002
- Last presentation: <u>January 11</u> before QM17
 - Was using QM17 high p_T γ-jet files from Dennis
- Today:
 - Full study of acceptance/efficiency and resolutions for statistical projections
 - Note: most of this has been presented in Cold QCD group and simulation meetings as well

Jet Response

- In p+p collisions we should be able to measure to lower p_T^γ since the underlying event is smaller
- How low can we reliably measure?
- Using PYTHIA8 with all prompt photon processes
 - Require PhaseSpace:pTHatMin = 10.0
 - Require reconstruction p_T^γ>10 GeV
 - Unless otherwise indicated jets are anti-k_T R=0.4

Jet pt Response

- Jet p_T response is worse at lower p_T (obviously)
- At 9-12 GeV the response returns to the nominal mean+width of ~0.8±0.1 that was seen for the high p_T QM sample
- To measure p_{out}=p_T^{jet}sinΔφ we need good p_T resolution, so with calo jets we likely can't below ~8 GeV

Acceptance/Efficiency

- To study acceptance/ efficiency, used previously described PYTHIA sample
- Truth γ distributions shown here

Acceptance/Efficiency

- Acceptance/efficiency determined for sPHENIX acceptance only, so really it is just an efficiency
- Fit with a saturated exponential to capture p_T dependence

γ-Jet Yield Estimate

- No γ-jet cross section at RHIC energies
- PHENIX has a direct photon cross section
- We can translate this to yields and then apply a "γ/γ-jet" efficiency from PYTHIA

Perfect Detector y Yields

- Cross section translated to yields
- Yields are for $|\eta| < 1$
- Fit this to a power law to get the high p_T dependence we will be able to measure at sPHENIX

Now apply efficiencies

γ Yields

- Applied efficiency values to yields from previous page
- The power law extrapolation is just the power law fit multiplied by the saturation term from the efficiency fit

Note: 300 pb⁻¹ taken from RHIC Cold QCD Plan (arXiv:1602.03922). Jamie recently presented CAD luminosity projections to sPHENIX EC of 200 pb⁻¹; can use this to be consistent within sPHENIX for future

γ/γ-Jet Efficiency

- Just because you measure a direct photon does not imply you measure the associated jet
- To estimate this, plotted PYTHIA8 cross sections with PHENIX cross section
- γ/γ-jet efficiency factor defined as the PYTHIA8 γjet cross section to the PYTHIA8 γ cross section

Final Yield Estimate

- After applying this efficiency to the yields on page 9 we get this
- Amounts to ~400k
 total γ-jet between
 10-40 GeV

Statistical Projections

- Chris ran a large production for me corresponding to the previously estimated yields
- Imposed isolation cut of R=0.3 radians to try and mimic actual yields we will measure
 - Isocone criterion: $\Sigma(E_{EMCal}+p_{T}^{tracks})<0.1xE_{iso}^{\gamma}$
- Statistical projections of $\Delta \phi$ and $p_{out}=p_T^{jet} \sin \Delta \phi$
- Note: These are not unfolded or corrected for detector response!
- The point is just to show statistical projections of what we will measure at sPHENIX

Δφ Estimates

p_Tjet increasing

pout Estimates

Conclusions

- Have made first look at statistical projections for some γ-jet observables in p+p collisions at sPHENX
- Will have to re-run projections soon anyway due to the code freeze for CD1
- Nonetheless first look shows we will have lots to measure at sPHENIX
- No p+A results as this was only PYTHIA8, so that will be a future thing to look into with HIJING
- Any suggestions to improve final statistical projections are welcome; I intend to show this work at my talk at the RHIC Users Meeting